Investigation of glass plate negatives deterioration

Linda Miskova, Miroslava Novotna

Laboratory of molecular spectroscopy

Problem 1 :

Composition of photographic materials

Problem 2:

Process failure during image developing

Problem 3:

Wrong and inconvinient storage conditions

Problem 1 :

photographic negatives are composed objects

- Support layer glass (followed by polymer materials)
- Emulsion layer gelatin with silver

Problem 2: Bad process during image developing

- Residual chemicals from
 photochemical process
- The main problem is short time of final bath

Problem 3:

Wrong storage conditions and materials – degradation by external factors

- Non stabile temperature and relative humidity
- Non-suitable packaging system

Degradation of glass plate negatives

- Degradation of emulsion layer
 - Silver mirrors
 - Yellowing
 - Golden and silver surface spots
 - Lost of the adhesion of emulsion layer
- Degradation of glass
 - Glass corrosion in the environment with higher relative humidity

"Golden (spot) disease"

- Investigation of astronomical plates from different observatories (Provance, Sonneber, Ondrejov, Bamberk, etc.)
- Yellowing inside the emulsion layer
- Surface golden spot

Yellowing of the emulsion layer

IR spectra of yellow and not yellow part of the negative

Analysis using FTIR-ATR Results - sulfates (SO_4^{2}) – residual from the photographic process

Material of the envelope – polyethylene

PROVENCE – surface golden disease

Microscope analysis

Cross section of the negative

PROVENCE – surface golden disease

Element analysis of the golden spots using SEM/EDS Table and graph of element concentration [weight %]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ag	34,15	30,30	29,89	30,50	32,19	30,10	31,70	32,00	24,63	25,51	22,75	19,93	19,18	19,04
S	4,12	3,04	2,51	2,47	2,43	2,36	2,37	1,52	1,36	0,96	0,73	0,61	0,55	0,51

Sonneberg

Photographic documentation in the Reflection and transmission light

SEM/EDS image of spot particle

	1	2	3	4	5
Ag	7,16	28,64	25,76	25,45	27,51
S	0,3	0,81	0,76	0,75	1,01

Ondrejov-problem with the envelopes and bad storage condition

Comparison of IR spectra cellulose and polyethylene

Glass analysis

Analysis of the glass using FTIR

- proof of glass hydration
- exposition of the water or high humid environment

Long exposition to the water

Common problems of glass negatives

Transmission light

Reflection light

Microscopic detail

Lost of emulsion layer adhesion

Microscopic documentation of gelatin which laid on the glass

Conclusions

- Non-destructive analysis of degradation products of glass plates negative – secondary degradation products of sulfur
- Analysis of used packaging material

Conclusions

- To prevent the formation of and/or to remove of the sulfur degradation products, it is necessary to monitor storage conditions also for the better understanding of chemical reactions in the photo-emulsion layer during long term storage under various conditions
- modeling using accelerated ageing data for digital restoration of the immages

Thank you for your attention

