Investigation of binary X-ray sources with photographic plates

Vojtěch Šimon

Astronomical Institute, Academy of Sciences, 251 65 Ondrejov, Czech Republic

Czech Technical University in Prague, FEL, Prague, Czech Republic

Talk: International workshop on scientific use, digitization and preserving astronomical photographic records (Prague, Czech Republic, March 18 – 21, 2014)

Prospects for monitoring of activity (I)

Monitoring enables to:

> identify the type of system

> place the events (e.g. outbursts) in the context of the long-term activity of the system

form the representative ensemble of events (e.g. outbursts) in
 (a) a given system
 (b) in a type of systems

Transitions between the activity states (e.g. outbursts, high/low states) are often fast and unpredictable – monitors of any type are needed.

Prospects for monitoring of activity (II)

Monitoring of a large part of the sky is needed:

most transients (objects with outbursts) were discovered only in outburst, not in quiescence before this event – a lot of 'sleeping' transients exist

monitoring is also inevitable for a search for rare, unexpected and unique phenomena. Cataclysmic variables (CVs) with accretion disks

Dominant source of luminosity in the optical band: accretion disk (the disk may reach down to the white dwarf (WD) if the WD is non-magnetized)

The inner part of the disk is missing if the WD is mildly magnetized (intermediate polar)

V1223 Sgr / 1H 1853–312 (the intermediate polar)

Part of the Bamberg plate (JD 2 439 383.24)

V1223 Sgr in its brightest state

Field: 22.2 x 22.2 arcmin

North is up East to the left

V1223 Sgr : "var"

Comparison stars: D, E, F, G, J Sin

Simon (2014)

The brightness of V1223 Sgr was measured by Argelander method using microscope.

V1223 Sgr / 1H 1853–312

V1223 Sgr / 1H 1853–312

The statistical distribution of brightness and its parameters (the standard deviation, skewness, excess) may not be very distorted by the sampling of the data (if a long time segment is mapped).

The statistical distribution of brightness:

>description of properties of the long-term activity of CVs.

>method for resolving among the types of CVs even in the sampled photometric data.

S4: JD 2 451 963 – 2 455 146 3183 days 362 obs. ASAS-3 CCD data

Bar width: 0.25 mag (plates), 0.1 mag (for CCD) 9

Variograms of V1223 Sgr / 1H 1853–312

Simon (2014)

Search for typical cycle-lengths of the long-term activity:

variograms for the individual time segments

Dramatic change of activity between two time segments (several decades apart)

V1223 Sgr / 1H 1853–312

Open circles: annular means (error bars: annular value of the standard deviation of magnitude)

- the flare is not included in the annular mean

The brightness is not stable on the timescales of months and years even in the high state.

Rare flares in the intermediate polars – V1223 Sgr

Sept 11, 1966; JD 2 439 380

"Normal" level

Flare of V1223 Sgr on Bamberg photographic plates (one plate per night)

Sept 14, 1966; JD 2 439 383

Time of the peak brightness

(flare) V1223 Sgr: "var"

Reference stars: "C1" and "C2"

North is at the top, east to the left.

12

GK Per / 1A 0327+43 (**CV – dramatic variations of the type**)

classical nova – novalike – dwarf nova (with increasing recurrence time of outbursts)

<u>Main common cause:</u> strongly enhanced mass outflow from the donor invoked by strong irradiation during classical nova explosion in 1901 (model by Schreiber et al. 2000)

Supersoft X-ray sources

Steady-state thermonuclear burning on the white dwarf (WD)

Strong activity in various spectral bands is common – these objects are thus very promising targets for monitoring

Detectability of the very soft X-ray emission is strongly dependent on the absorption inside the object – many of these sources remain unrecognized (optical activity may help reveal them)

QR And / 1RXS J001950.0+215651

Long-term activity – Harvard and Sonneberg photographic plates

The activity on long timescales is mapped only in the optical region.

- Most photographic data map the time before the discovery of the object (it was first discovered in X-rays, only later in the optical band (Beuermann et al. 1995))
- + X-ray observations are only very sparse snapshots.

V Sge / 2E 2018.0+2056

Unique type of X-ray sources

- Very complicated long-term activity and its evolution (from the optical data so far):
- outbursts (segment S0)
 high/low state transitions (segments S1, S3, S5, S7, S9)
- flat segments (segments S2, S4, S6, S8)

Simon & Mattei (1999, 2002, 2006)

Discless magnetic cataclysmics – polars

Strongly magnetized white dwarf (*B* ~ 10⁹ Gauss)
 Accretion of matter directly onto the region(s) of the magnetic pole(s)

AM Her / 4U 1814+50

Long-term activity: alternating high and low states on the timescale of months

Transitions between the states: shorter than the durations of the states (the plates often catch the system in a given state)

Study of this optical activity even for the epoch preceding the discovery of this object and its classification as the X-ray emission

>Activity easily detectable on archival photographic plates

Explosions of classical novae

Classical novae – rare thermonuclear explosions of accreted matter on the WD in almost all types of CVs *Typical duration of explosion:* weeks to months *Typical amplitude of explosion:* 12-15 mag *Recurrence time of explosion:* from decades (recurrent novae) to 10⁴ years

Upper limits constrain the duration of the fast rise to the peak of explosion (badly covered!)

Detection of explosion on the archival plates: ≻New object in an "empty" position

- Novae are usually faint in quiescence (they are discovered by the outburst)
- Pre-explosion activity (and search for the previous explosions) can be studied on the plates

Low-mass X-ray binaries (LMXBs)

Typical structure

Donor (lobe-filling star)

Compact mass-accreting object: neutron star (NS) or black hole (BH)

Accretion disk embedding the compact object

Dominant part of the optical emission from the accretion disk and the irradiated part of the donor

Long-term activity in the optical band (even before the era of X-ray astronomy)

Her X-1

Her X-1 – the unique nature of the orbital modulation

Sonneberg photographic data (one plate per night)

Hudec &Wenzel (1976) Simon et al. (2002)

The orbital period: 40.8 hours

Dominant part of the optical emission in the active state – reprocessing off X-rays on the donor (Gerend & Boynton 1976)

Inactive state – temporary decrease of irradiation of the donor Observed only prior to the X-ray astronomy era.

the unique nature of the orbital modulation Her X-1

Orbital phase

Her X-1 ... in the recent years

Relation between the optical and X-ray log-term activity

X-rays (ASM/*RXTE* 1.5 – 12 keV) (One-day means)

On and Off-states do not form a clear light curve (but two anomalous low states ALS1 and ALS2 can be resolved).

Optical (AAVSO)

ALS1 state – decrease of the optical brightness accompanied the fall of the X-ray intensity.

Optical modulation caused by X-ray irradiation of the donor remained

Sco X-1 / V818 Sco (LMXB)

Long-term light curve in blue light

One-year means from archival photographic plates

The light variations are composed of rapid and long-term activity (episodes of high and low states could occur during a given year).

Differences in the *B*-mag histograms: Explanation: variations in the mass accretion rate and the relatively short time period typically covered by optical observations 27

Examples of the optical activity of high-mass X-ray binaries (HMXBs)

High-mass X-ray binaries (HMXBs)

Donor – thermal radiation – often dominant in the optical

Accretion disk (if exists) embedding the compact object (neutron star or black hole) – thermal radiation

Vicinity of the compact object, colliding winds: inverse Compton process, bremsstrahlung (X-rays)

Accretion modes for the large-amplitude changes of brightness:

BH, WD)

its lobe

Wind accretion

Periastron passage

BH, WD)

its lobe

CI Cam / XTE J0421+560

Remarkable system (microquasar)

(Lamers et al. 98; Belloni et al. 99; Robinson et al. 02; Hynes et al. 02; Barsukova et al.02)

Outburst:

- thermal instability of a small, wild-fed accretion disk
- mechanism of this event is analogous to outbursts of soft X-ray transients (Simon et al. 06)

Sept 13, 1936 JD 2 428 424

CI Cam/XTE J0421 Archival Bamberg plates

Feb 19, 1938 JD 2 428 949

CI Cam on the plates in various states. North is up, east to the left. Field size: 36 x 36 arcmin. Fluctuations of brightness occurred.

CI Cam / XTE J0421 Activity on timescales of decades

Striking difference in activity before and after the outburst – even optical activity itself can indicate the influence of the X-ray outburst on the character of the long-term activity – outbursts of CI Cam thus appear to be very rare (decades?).

Jun 28, 1965 JD 2 438 940

V4641 Sgr/XTE J1819 – 254 Archival Bamberg plates

V4641 Sgr on the plates in various states. North is up, east to the left. Field size: 8.4 x 8.4 arcmin. Fluctuations of brightness occurred.

V4641 Sgr / XTE J1819–254 (microquasar)

A0538 – 66 (HMXB)

Recurrent X-ray transient in the Large Magellanic Cloud (White & Carpenter 1978)

 Outbursts: periastron passages of the compact object (NS) in a highly eccentric orbit (e ~ 0.7) (Charles et al. 1983)

Compact accretor: neutron star (Skinner et al. 1982)

Donor: high-mass, type B (~12 M_{Sun}) (Charles et al. 1983)

Conclusions

- Activity of some X-ray binary systems undergoes large changes on the timescale of decades – photographic data can significantly extend the mapped time interval, and to discover such changes.
- Photographic data enable us to study the optical counterparts even in the time intervals before the discovery of such objects (even many decades before!).
- Unpredictable and rare events (flares, outbursts, transitions between the states) can be discovered on the archival photographic plates.
- Transients with the large-amplitude brightenings (e.g. novae) can be discovered on the photographic plates.
- The large-amplitude activity of such objects can be studied even on the non-digitized photographic plates (e.g. by Argelander method + microscope).
- It is possible to combine the photographic archival data with the newer CCD observations also transformations to the same band (e.g. V) are possible.

Acknowledgements:

This study was supported by grants 13-394643 and 13-33324S provided by the Grant Agency of the Czech Republic. Also support by D-25-CZ4/08-09 DAAD is acknowledged. This research has made use of the Dr. Remeis Observatory **Bamberg Southern Patrol Photographic Sky Survey, and the** All Sky Automated Survey (ASAS) and NSVS databases. This research has made use of the observations provided by the ASM/RXTE team (Levine et al., 1996, ApJ, 469, L33), the data from the AAVSO International database (Massachusetts, USA) and the AFOEV database operated in Strasbourg, France. We thank the variable star observers whose observations contributed to this analysis. Some images come from the web pages of HEASARC and www.redorbit.com/images.