Data Mining the Optically Variable Sky since 1950

Greg Madsen (IoA, Cambridge) B. Gaensler (Univ. of Sydney)

> ApJS, 209, 33 (2013) arXiv:1309.6322

Motivation

- Current and next generation transient surveys limited to a few year time-scales
- Harness the long temporal & huge sky coverage of historical optical survey data
- Statistical analysis of large classes of variables
 - AGN/QSOs: structure of central engine
 - RR Lyr: structure of Galactic halo
 - Period changes in Miras, eclipsing binaries
- Discovery & understanding of outbursts from rare objects
 - dwarf novae, FU Ori, R Cor Bor, LBVs
- Explore new parameters in luminosity-duration space
- Improve historical photometry; legacy value

48" Schmidt at Palomar

Approach: Use Existing Catalogs

- Photographic plate surveys go back ~100 years; digitised to create modern catalogs (e.g. USNO-B, GSC, SuperCosmos, DASCH)
- Plates very good for astrometry, OK for photometry
- USNO-B: three-band, five-epoch photometry of a billion objects
- Sloan Digital Sky Survey (SDSS) Data Release 9: accurate, five-band photometry of 260M *point sources*
- Compare SDSS & USNO-B catalogs to conduct blind search for variability
 sensitivity (≈ 20th 21st mag)
 areal coverage (≈ 30% of sky),
 temporal coverage (~ 60 years)

Recalibration: Stage 1

Recalibration: Stage 2

m_{SDSS} (mag)

- Plate-wide (large angular scale) calibration problems remain
- Common pattern in residual magnitude vs. magnitude
- USNO magnitude adjusted to remove pattern
- Residual scatter used as proxy for photometric accuracy

m_{SDSS} (mag)

Recalibration: Results

Recalibration: Results

Lessons & Limitations

- Careful, self-consistent treatment of proper motions and cross-matching (10% move by > 1")
- Robust, automatic identification of objects blended with stars, galaxies, & artefacts (affects $\approx 15\%$)
- Check consistency of USNO, GSC, and SuperCosmos magnitudes of the *same* objects ($\approx 5\%$ are inconsistent)
- Visual inspection of large samples used to assess catalog reliability
- Remaining issues
 - blends with unusual artefacts
 - 'pathological' proper motions
 - inaccurate Sloan magnitudes (!)
 - object is not point source

Large Amplitude Variables

- ≈ 1.5 M objects exhibit $\Delta m > 1.0$ mag
 - 98% are spurious; removed by flagging
- $\approx 250,000$ candidate large amplitude (4 σ) variables
 - visual inspection suggests $\approx 70\%$ are real
 - only 4% appear in major variable catalogues (VSX, CRTS)

New Mira?

Date:

g: 16.0 ± 0.2 1954.48

 $\begin{array}{c} 20.0\pm0.2\\ 1988.46\end{array}$

 $\begin{array}{c} 20.5\pm0.02\\ 2005.43\end{array}$

Classifying Variables

All cross-matched SDSS point sources

Classifying Variables

4σ variables (*J*-band; 75k objects)

Summary

- Improved historical photometric catalogue
 - six-epoch photometry of ≈ 44 M stars & quasars (1950-2010)
 - 95% complete to $g \approx 20.0$ mag; accurate to ≈ 0.1 mag
 - very low contamination rate
 - > 250,000 large amplitude variable candidates; mostly uncataloged
 - legacy value for future surveys (e.g., LSST)
- Future work
 - ingest ongoing wide-field optical surveys to extend sky coverage; extend cross-matching to UV, IR, radio...
 - identify "transients"

Transients Teaser?